PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons

Related Articles
Community-Nominated Targets
July 2015
Drug Discovery: Solving the Structure of an Anti-hypertension Drug Target
July 2015
Retrospective: 7,000 Structures Closer to Understanding Biology
July 2015
Design and Evolution: Unveiling Translocator Proteins
June 2015
Signaling with DivL
May 2015
Signaling: A Platform for Opposing Functions
May 2015
Signaling: Securing Lipid-Protein Partnership
May 2015
Dynamic DnaK
March 2015
Iron-Sulfur Cluster Biosynthesis
December 2014
Mitochondrion: Flipping for UCP2
December 2014
Mitochondrion: Setting a New TRAP1
December 2014
Power in Numbers
August 2014
Quorum Sensing: A Groovy New Component
August 2014
Quorum Sensing: E. coli Gets Involved
August 2014
iTRAQing the Ubiquitinome
July 2014
Microbiome: The Dynamics of Infection
September 2013
Protein-Nucleic Acid Interaction: A Modified SAM to Modify tRNA
July 2013
Protein-Nucleic Acid Interaction: Versatile Glutamate
July 2013
PDZ Domains
April 2013
Alpha-Catenin Connections
March 2013
Cell-Cell Interaction: A FERM Connection
March 2013
Cell-Cell Interaction: Magic Structure from Microcrystals
March 2013
Cell-Cell Interaction: Modulating Self Recognition Affinity
March 2013
Bacterial Hemophores
January 2013
Archaeal Lipids
December 2012
Membrane Proteome: Capturing Multiple Conformations
December 2012
Lethal Tendencies
October 2012
Symmetry from Asymmetry
October 2012
A signal sensing switch
September 2012
Regulatory insights
September 2012
AlkB Homologs
August 2012
Budding ensemble
August 2012
Targeting Enzyme Function with Structural Genomics
July 2012
The machines behind the spindle assembly checkpoint
June 2012
Chaperone interactions
April 2012
Pilus Assembly Protein TadZ
April 2012
Revealing the Nuclear Pore Complex
March 2012
Topping off the proteasome
March 2012
Twist to open
March 2012
Disordered Proteins
February 2012
Analyzing an allergen
January 2012
Making Lipopolysaccharide
January 2012
Pulling on loose ends
January 2012
Terminal activation
December 2011
The Perils of Protein Secretion
November 2011
Bacterial Armor
October 2011
TLR4 regulation: heads or tails?
October 2011
Ribose production on demand
September 2011
Moving some metal
August 2011
Looking for lipids
July 2011
Ribofuranosyl Binding Protein
June 2011
A molecular switch for neuronal growth
May 2011
Cell wall recycler
May 2011
Added benefits
April 2011
NMR challenges current protein hydration dogma
March 2011
Nitrile Reductase QueF
March 2011
Tip formin
March 2011
Inhibiting factor
February 2011
PASK staying active
February 2011
Tryptophanyl-tRNA Synthetase
February 2011
Regulating nitrogen assimilation
January 2011
Subtle shifts
January 2011
December 2010
Function following form
October 2010
tRNA Isopentenyltransferase MiaA
August 2010
Importance of extension for integrin
June 2010
April 2010
Alg13 Subunit of N-Acetylglucosamine Transferase
February 2010
Hemolysin BL
January 2010
December 2009
Two-component signaling
December 2009
Network coverage
November 2009
Pseudouridine Synthase TruA
November 2009
Unusual cell division
October 2009
Toxin-antitoxin VapBC-5
September 2009
Salicylic Acid Binding Protein 2
August 2009
Proofreading RNA
July 2009
Ykul structure solves bacterial signaling puzzle
July 2009
Hda and DNA Replication
June 2009
Controlling p53
May 2009
Mitotic checkpoint control
May 2009
Ribonuclease and Ribonuclease Inhibitor
April 2009
The elusive helicase
April 2009
March 2009
High-energy storage system
February 2009
A new class of bacterial E3 ubiquitination enzymes
January 2009
Poly(A) RNA recognition
January 2009
Activating BAX
December 2008
Scavenger Decapping Enzyme DcpS
November 2008
Bacteriophage Lambda cII Protein
October 2008
New metal-binding domain
October 2008
Blocking AmtB
September 2008
September 2008
Aspartate Dehydrogenase
August 2008
RNase T
July 2008
May 2008

Research Themes Cell biology

Disordered Proteins

SBKB [doi:10.3942/psi_sgkb/fm_2012_2]
Featured System - February 2012
Short description: Looking through the thousands of structures in the PDB, we get the impression that proteins must have a stable, folded structure to be functional.

Looking through the thousands of structures in the PDB, we get the impression that proteins must have a stable, folded structure to be functional. Recently, however, it has become clear that many proteins use disorder when performing their jobs. For instance, the small apoptosis protein NOXA (shown here in red from PDB entry 3mqp, solved by PSI researchers at NESG) has a random structure when it is free in solution, and only adopts an ordered, alpha-helical structure when it binds to its partner in the cell. Other hints of the utility of disorder are scattered around the PDB, such as flexible hinges in antibodies and loops that open and close in HIV protease.

Disorder Everywhere

Disorder is surprisingly common, once you start to look. Disordered regions have characteristic sequences, which can be predicted much like the more familiar sequences that cross through membranes. PSI researchers at NYCOMPS have applied these prediction methods to several genome sequences and uncovered some interesting trends. Disordered regions seem to be particularly common in signaling and regulatory proteins. Like NOXA, disordered chains allow lots of options for a protein to interact with many other proteins in a signaling network. Related to this, they found that disordered proteins are much more prevalent in eukaryotic cells than in bacteria, which is a reflection of the greater complexity of eukaryotic regulatory networks.

Floppy Loops

Disorder is used in different ways to enhance the function of proteins. Many signaling proteins have flexible tails that bind in grooves on their signaling partners. Flexible loops are also widely used by proteins. For instance, the GlnK protein has a long, flexible loop that binds to its target, an ammonia channel, and blocks its function. The loops are easily seen in the crystallographic structure of the complex (shown here from PDB entry 2ns1, solved by PSI researchers at CSMP) but when the GlnK protein is crystallized by itself, the loops are disordered and not seen in the experiment (PDB entry 2gnk, not shown).

Seeing Disorder

The GlnK structures underscore one of the great challenges for studying proteins that use disorder in their function: it's difficult to solve the structure of a protein that's intrinsically unstructured. Crystallographers often need to clip off the disordered parts to promote crystallization. NMR spectroscopy, on the other hand, can be used to look at proteins with appreciable disorder. For instance, PSI researchers at CESG have used NMR to study ZNF593, a transcriptional regulator with 115 amino acids, and found that it has a folded zinc finger at the center and long disordered tails at either end (PDB entry 1zr9). Presumably these tails play a role in the interaction with other transcription factors. To take a closer look at disorder in this structure, the JSmol tab below displays an interactive JSmol.

ZNF593 (PDB entry 1zr9)

Twenty models of ZNF593 are included in this NMR structure analysis. Use the button to play an animation that steps through all the structures, and notice that the zinc finger is relatively stable, but the flanking chains are highly mobile.


  1. Schlessinger, A., Schaefer, C., Vicedo, E., Schmidberger, M., Punta, M. & Rost, B. Protein disorder -- a breakthrough invention of evolution? Curr. Op. Struct. Biol. 21, 412- 418 (2011).

  2. Hayes, P. L., Lytle, B. L., Volkman, B. F. & Peterson, F. C. The solution structure of ZNF593 from Homo sapiens reveals a zinc finger in a predominantly unstructured protein. Prot. Sci. 17, 571-576 (2008).

  3. Gruswitz, F., O'Connell, J. & Stroud, R. M. Inhibitory complex of the transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 1.96 A. Proc. Natl. Acad. Sci. USA 104, 42-47 (2007).

  4. Dyson, H. J. & Wright, P. E. Intrinsically unstructured protein and their functions. Nat. Rev. Mol. Cell Biol. 6, 197-208 (2005).

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health