PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons

Related Articles
Design and Evolution: Molecular Sleuthing Reveals Drug Selectivity
June 2015
Families in Gene Neighborhoods
June 2015
Ryanodine Receptor
April 2015
CCR5 and HIV Infection
January 2015
Drug Targets: Bile Acids in Motion
September 2014
Drug Targets: S1R's Ligands and Partners
September 2014
P2Y Receptors and Blood Clotting
September 2014
Bacterial CDI Toxins
June 2014
Glucagon Receptor
April 2014
March 2014
Microbial Pathogenesis: Targeting Drug Resistance in Mycobacterium tuberculosis
February 2014
Design and Discovery: Virtual Drug Screening
January 2014
Cancer Networks: IFI16-mediated p53 Activation
November 2013
G Proteins and Cancer
November 2013
Drug Discovery: Antidepressant Potential of 6-NQ SERT Inhibitors
October 2013
Drug Discovery: Finding Druggable Targets
October 2013
Drug Discovery: Identifying Dynamic Networks by CONTACT
October 2013
Drug Discovery: Modeling NET Interactions
October 2013
Membrane Proteome: GPCR Substrate Recognition and Functional Selectivity
August 2013
Infectious Diseases: Determining the Essential Structome
May 2013
NDM-1 and Antibiotics
May 2013
Microbial Pathogenesis: Computational Epitope Prediction
January 2013
Microbial Pathogenesis: Influenza Inhibitor Screen
January 2013
Microbial Pathogenesis: Measles Virus Attachment
January 2013
Cytochrome Oxidase
November 2012
Membrane Proteome: The ABCs of Transport
November 2012
Bacterial Phosphotransferase System
October 2012
Regulatory insights
September 2012
Solute Channels
September 2012
Pocket changes
July 2012
Receptor bias
July 2012
Anthrax Stealth Siderophores
June 2012
G Protein-Coupled Receptors
May 2012
Substrate specificity sleuths
April 2012
Reading out regioselectivity
December 2011
Superbugs and Antibiotic Resistance
December 2011
Terminal activation
December 2011
A change to resistance
November 2011
Docking and rolling
October 2011
Breaking down the defenses
September 2011
A2A Adenosine Receptor
May 2011
Cell wall recycler
May 2011
Subtly different
March 2011
January 2011
Subtle shifts
January 2011
ABA receptor diversity
November 2010
COX inhibition: Naproxen by proxy
November 2010
Zinc Transporter ZntB
July 2010
Peptidoglycan binding: Calcium-free killing
June 2010
Treating sleeping sickness
May 2010
Bacterial spore kinase
April 2010
Antibiotics and Ribosome Function
March 2010
Safer Alzheimer's drugs?
March 2010
Anthrax evasion tactics
September 2009
GPCR subunits: Separate but not equal
September 2009
Antibiotic target
August 2009
Salicylic Acid Binding Protein 2
August 2009
July 2009
Tackling influenza
June 2009
Bacterial Leucine Transporter, LeuT
May 2009
Anthrax stealth molecule
March 2009
Drug targets to aim for
February 2009
High-energy storage system
February 2009
Transporter mechanism in sight
February 2009
Scavenger Decapping Enzyme DcpS
November 2008
Blocking AmtB
September 2008

Research Themes Drug discovery

Subtle shifts

SBKB [doi:10.1038/sbkb.2010.60]
Featured Article - January 2011
Short description: The crystal structure of EF-Tu bound to the 70S ribosome solves a 40-year-old puzzle.

Image courtesy of Martin Schmeing and Venki Ramakrishnan.

For protein synthesis, the ribosome requires additional protein factors, including several GTPases. One such protein is the elongation factor EF-Tu, which takes aminoacyl-tRNA to the ribosome where it forms a complex with GTP, elongation factor G and initiation factor 2.

Hydrolysis of GTP is known to be accompanied by a change in conformation of the switch I and II regions of GTPase. The question that has remained unanswered for nearly 40 years is, how does the ribosome activate GTP hydrolysis?

The crystal structure of EF-Tu bound to the 70S ribosome with Trp-tRNATrp in the presence of the antibiotic paromycin and a GTP analog, solved by Ramakrishnan and colleagues, reveals the active form of EF-Tu.

In this state, the switch I region of the GTPase remains ordered, and no large-scale conformational rearrangements are seen. Instead, the catalytic histidine shifts subtly within the active site to a position where it can act as a general base coordinating the nucleophilic water, ready to attack the γ-phosphate of GTP.

Residue A2662 of the sarcin-ricin loop of the 23S ribosomal RNA is important for the positioning of the active site histidine. This is likely to be a conserved mechanism because all translational GTPases interact with this loop and the catalytic histidine.

Maria Hodges


  1. R. M. Voorhees et al. The Mechanism for activation of GTP hydrolysis on the ribosome.
    Science 330, 835-838 (2010). doi:10.1126/science.1194460

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health